Electron Cloud and Emittance in RHIC

S.Y. Zhang and V. Ptitsyn

- In proton run 2005, the emittance growth at RHIC injection and acceleration has a dependence on dynamic pressure rise, which is caused by electron cloud.
- The emittance growth in 2006 and 2008 proton runs is smaller. Average electron density in rings is lower, partly due to additional 180 m (2006) and 100 m (2008) NEG pipes.
- RHIC upgrade calls for at least 30% higher intensity, 40% and 70% shorter bunches at store for 9 MHz and 56 MHz scenarios. The emittance growth may be of concern.

Emittance at early store

- In RHIC polarized proton run 2005 (pp05), the beam emittance at early store has a dependence on dynamic pressure rise, which is caused by electron cloud.
- As a result, fill 7264 with 142×10¹¹ protons had luminosity 11.1×10³⁰/cm²s, 7327 with 187×10¹¹ protons had 10.2×10³⁰/cm²s.
- The beam intensity in pp06 and pp08 is higher, but the overall dynamic pressure rise is lower.
 Therefore, the electron cloud induced emittance growth is less concerned.

Run	2	005	20	2008	
<i>NEG pipes</i> m		250	430		530
Fill	7250	7327	7909	7935	9989
Bunches	78	106	111	111	106
B/Y intensity 10 ¹¹	74/73	109/109	164/172	206/205	187/175
Ave. e-density 10 ¹⁰ /m ³	0.24	2.2	0.22	1.7	0.17
<i>Emit. growth</i> πμm	~ 0	11	~ 0	12	~ 0

- Beam is affected by the overall electrons in rings, so average electron density is calculated for study.
- When a bunch passed, all electrons hit the wall and the electron desorption
 → gas molecules → pressure rise.
- Average e-density of
 ≥ 2×10¹⁰/m³ seems
 harmful. Examples
 are 7327 (pp05) and
 7935 (beam study in
 pp06). In pp06 and
 pp08 operations, e density only reached
 ~ 0.2×10¹⁰/m³.

100 GeV store	<i>RF</i> Voltage MV	Longi. Emit. eVs	Bunch Length ns	Bunch Intens. 10 ¹¹	Peak Curren. A	Moment. Spread %
Run 2008	0.3	2.0	13	1.5	3	0.09
9 MHz - 28 MHz	0.3	0.7	7.7	2	6.6	0.06
9 MHz - 56 MHz	2	0.7	4	2	13	0.11

- In pp08, RF voltage raised at store to shorten bunches, electron multipacting is enhanced.
- RHIC upgrade plan calls for shorter bunches at store. Electron cloud effect may need attentions.
- The 9 MHz scenario plans to keep the small longitudinal emittance, then to use 28 MHz for store. Peak current at early store will be 2 times higher than pp08.
- The 56 MHz at store will have 3 times of peak current.

- The bunch-bunch scaler can be used to study the electron cloud effect (also for beam-beam, injection kicker, and gap cleaner effects).
- Example of the PHENIX bunch-bunch scaler of Fill 9989. The bunch emittance calculated from the 4 minutes b-b scaler seems promising.
- The bunch-by-bunch ZDC structure is not understood. The sum of the ZDC account of all 106 bunches is about 2/3 of the PHENIX ZDC. Why the head bunches have larger emittance?